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DISPERSION OF INTERNAL WAVES BY AN OBSTACLE FLOATING ON THE 
BOUNDARY SEPARATING TWO LIQUIDS* 

S.A. GABOV, A.G. SVESHNIKOV and A.K. SHATOV 

The problem of the scattering of a wave, that propagates along the 
boundary between two liquids, by a semi-infinite obstacle floating on 
this boundary is solved in a two-dimensional formulation. The solution 
is constructed using the Wiener-Hopf method interpreted by Jones in the 
framework of linear potential theory /l/. The fundamental properties of 
the processes of scattering and reflection of a wave by the obstacle are 
stated and an asymptotic analysis of the field in a far zone is 
presented. 

1. We assume tht the half-space z<O is filled with a homogeneous heavy incompressible 
liquid of density pl, and the half-space z > 0 is filled with a similar liquid of density pz, 
where p1 > pa. Suppose that there are massive particles of some substance floating on the 
surface z = 0 between the liquids, and assume that the particles do not interact with each 
other as the separating boundary oscillates, or their interactions are negligible. The 
presence of such particles on the boundary between the liquids enables us to regard the boundary 
as a massive surface with a surface density of mass distribution (~20, where 0, being a 
function of the points of the boundary, may vanish in some of its regions. 

We shall confine ourselves to the two-dimensional formulation, and we shall consider the 
case when the floating substance is contained in the half-plane {x>O, z -= 0) only, and has 
constant density (Jo. The half-plane {z< 0, z = 0) represents the free separating boundary. 
We shall ascribe the index 1 to all quantities related to the lower liquid, and the index 2 
to those related to the upper liquid. 

Suppose that a stationary internal wave of the form 

lLjo ._ ujo (z, z.)~xP (---lot) =(-l)j+l A e~p (-al z 1 + lax - iwt), j =l, 2 

a =- 09 (pl -1 p,).'[g (P1-- PJI 

approaches the massive boundary from infinity along the boundary separating the liquids. Here 
uj= (j x- 1, 2) is the velocity potential and g is acceleration due to gravity. 

We shall consider the problem of the diffraction of the internal wave UjO on the massive 
part of the boundary. Let us express the amplitude Ui of the velocity potential as the sum 
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of the potential of the incoming wave and the potential of the wave arising as a result of dif- 
fraction: u, = UjO (I, 2) + U] (I, 2). For the potentials uj describing the velocity field of the 
dispersed wave, the following boundary value problem for conjugation of harmonic functions 
arises: 

Auj=O, j=1,2; z#O (1.1) 

t?u,l& = i&'da, Vs E R’, a = 0 

63 (WI - Wa + I.3 (x) au,/aq -g (PI - pp) du,/c92 = 
- aAo% (I) exp (iaz), Z=O IUjI+O, [ZI+ly) 

0 (I) = 1 u. = const>. 0, z>tO 

0, z<o 

Moreover, the functions uj should be bounded in a neighbourhood of the point (x, 2) = (0, 0) 
(the point of discontinuity of a(z)) and their gradient should satisfy the estimate IVujI,< Cl 

InrI as r=l/s2+22-+0 (llconditions on the edge"). 
The dynamic condition (the third equality of (1.1)) can be derived on the basis of 

Newton's second law of motion for a massive surface and the Bernoulli integral (with this end 
in view, see /2/J. 

If the functions uj(Xta)(j=1,2) 

a) = u1 (G 2) + u2 (x, -2) 
are the solution of problem (l.l)! the function u (5, 

defined for z.<O satisfies the following conditions: v is a 
harmonic function for ~(0, du(s,O)/& = 0 and v (I, z)+ 0 as IzI-+oo. Hence, by the 
appropriate theorem on uniqueness for harmonic functions, it follows that V(X,Z)E 0 for 
z<O, and so U, (x, 2) = -U1 (5, -2) for z>O. Consequently, the solution of problem (1.1) 
can be reduced to searching for a function Ul (x, 2) defined for z<O and being a solution 
to the problem below, which follows from (1.1): 

Au = 0, (5, z) E R_Z E {(x, z): cc E R’, z< 0) 
u, - au = 0, z-o, x<o 

uz - bu = Au (b - a) exp (iax), z = 0, x > 0 

IuI+O, Z.-+--cc 

Iu(<C, IVuI<C,llnrI, r+O 
b = 0' (~1 + pz)iIu, (0,' - a')], 0,' = g (~1 - ~$0, 

(1.2) 

Here and henceforth the index of u1 is dropped. 

2. One can COnStrUCt the solution of problem (1.2) by reducing it to the Riemann-Hilbert 
problem with discontinuous coefficients /3, 4/. We shall use a somewhat different but essen- 
tially equivalent method. We shall construct the solution of problem (1.2) as the limit as 
E = E1 + ie, + 0; cl, c2 > 0 of the solutions UE (57 2) of the equation Au, + &, = 0 satisfying 
all conditions in (1.2) with the function exp (lax) on the right-hand side of the second con- 
dition replaced by exp(ikx), where k = 1/d + 9, and with the third condition replaced by 
the stronger condition I u, I + 1 VuE I < C exp (--6(z) r) as r+ co, where s(c)-+ -/- 0 as E--f 0. 

We shall refer to the problem of defining the function u,(x,z) as the auxiliary problem. 
The solution of the auxiliary problem can be constructed using Jones's interpretation of 

the Wiener-Hopf method /5/, and has the form 

Ue(&Z) = 
Ak (b - a) 

xiF (k) s 
0”; ~y~~;~l da 

F (k) = L+ (4, G (a) = (Y (a) + I b I)& (a), o > us 
F (k) = -M+ (k) (k + 4, G (4 = (a + a,)dM_ (a) (y (a) + b)], 

0 < 0, 

(2.4) 

F (k) = J’+ (k) (a - b), G (a) = l/P_ (a), o = co, 

a, = l/ha + 9 

(for o==o,, b=+m and boundary condition (1.2) takes the form u =r -A exp (tkx). Besides, 
the second condition on the edge should be replaced by the condition /Vu I < &-‘I~, r-+0). Here 
and henceforth we integrate over the entire real axis. 

Let us describe the notation used in formulae (2.1). We denote by ~(a) the branch of 

the function -r/n that takes the value --le for a = 0. To single out this branch in 
the a -plane, we make the following cuts: a vertical cut directed upwards starting at the 
point a = E, and another vertical cut directed downwards starting as a---F. Thus, the 
branching points a = _c& are connected by a cut passing through an infinitely distant point. 



The functions &t 64 and M*(o) in (2.1) are the factors of a decomposition of the 
following functions into products: 
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L (a) = Iy (a) j a] IV (a) -t- 1 b 1 J = L, (a) L_ (a) 

M (a) = [V (u) + al/Iy (a) + bl = M+ (a) M_ (u) 

(2.2) 

such that L_ (a) = L, (-a), fiI_ (a) = M+ (-a) and L, (a) - C,a, M, (a) - C, for Im (a)> -6 (E), 

]Ul-+-CO. 

The factorization of functions (2.2) can be obtained on the basis of the factorization 
of the function P (a) = ~(a) + a,a>O such that P_(a) = P+(-a) /5/: 

P+(u)= ]/a -&exp 
- IS[ w + V+(S) + kr+(-k)]+$] 

II 

r+(E) = &In Y (8 - 5 + ie 
Y (5) + I - i.2 

Here and below In z = In 1 z I f targ z, where --nl2 < arg z < 3~~12. 
To obtain the solution of problem (1.2), it is necessary to pass to the limit as 

in formulae (2.1). To,achieve this aim, we need, in particular, to find the limiting 
pression for the function(2.3)as E-+O,which turns out to be equal to 

alo 
1 

P+(u)=P_(-u)=I/a+ aexp ni 
- I s In5 ,.d_s, 3 0 

(2.3) 

E-+0 
ex- 

(2.4) 

As a result of passing to the limit as E+O, some poles on the real axis appear for 
the integrals in (2.1). Thus, to evaluate these integrals, one should pass round the 
singular points of the integrands in such a way as to pass above the negative poles and below 
the positive ones. Using formulae (2.2)-(2.4) in the integrals in (2.1), one should take into 
account that for E = @, 

k = a, a, -= b, y (a) = 1/s = a sgn Re a 

It is easy to check that, after passing to the limit, formulae (2.1) give the solution of 
problem (1.2). which by means of simple algebraic reduction based on formulae (2.2)-(2.4) can 
be written in the following form: 

(2.5) 

L, (47 (0 > 0s 

G (a) = M+ (a) (a + b), o < as 

p+ (4, co = 0, 

The multiplier F is defined in (2.1) 

3. To analyse the complete wave field u = u" + u with u" = u,' as r=~/XZfz2+00, 

we introduce the polar system of coordinates x = rcoscp, z = r sinq, -n< (p<O, and we replace 
the integrals in (2.5) by integrals over the bisectors of the first and second quadrants of 
the a-plane for x<O, and over the bisectors of the third and fourth quadrants for x>O, 
The integrands decrease exponentially on the bisectors, and we can use integrationby parts to 
evaluate the integrals. Up to terms of order O(r+), asymptotic estimation of the integrals 
over the bisector gives 

A (b- a) 
ud = xiF (a)G (0) 

sin ‘p 
P 

(3.1) 

Transforming the contours of integration as described above,one has to take into account the 
residues at the simple poles a = fa and a : -b. The poles a=--a and a = -b should 
be taken into account for x>O. If x>o, then the residue at the point a = --a cancels 
the incoming wave .uO in the expression for the complete wave field, while the residue at the- 
pole a=-b, which is taken into account for b>O (or m<o,) gives the surface wave 

It follows that for z>O, the complete wave field can be written in the form 
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u = Ud + p (0) Us (3.3) 

where p (0) = 1 for o<o, and p (0) = 0 for 0 > 0,. 
For x<O, only the residues at the pole tl = a contributes to the complete wave field. 

This contribution describes the reflected wave 

uR = A A (a) exp (az - tax) (3.4) 

i 

-~_(a)/~+(a), a>% 

l\(U) = (a - b)M_(a)l[(a -t b)M+(a)l, w< 6% 

- P_(a)lP+(a), 0 = 0, 

Therefore, the complete wave field for x<O can be expressed as 

u = U" $ UR + ad 

4. Formulae (3.1)-(3.5) given above describe the behaviour of the solution of problem 
(1.2), which is shown above to be closely related to the solution of problem (1.1). Namely, 
the solution of problem (1.2), which is defined for z,<O, extended to the upper half-plane 

z>U in such a way that it becomes an odd function, is a solution of problem (1.1) con- 
cerning diffraction of the internal wave uj", j = 1,2 by the massive part of the separating 
boundary. This enables us to write down the corresponding formulae for the complete field in 
(1.1). 

According to (3.3), the equality 

Lij = udj (X, 2) f p (W) Us' (X, Z), J = 1, z (4.1) 

holds for x>U, where the function p(o) was defined earlier, and udj and usI are odd func- 
tions defined in the whole xz-plane by extending the functions ud and uQ to the region z>o. 
For instance, 

ud = 
I 

u&&z), j=l, z<lJ 

-r&(x,--z), j=2, z>O 

For x<U, on the basis of (3.5), we obtain 

UT = U,’ i URj + Udj, j = 1, 2 (4.2) 

where uj ' is the incoming wave defined in Sect.1, and uaj is the odd extension of the function 
UR (5, a) to the whole plane. 

Formulae (4.1) and (4.2) enable us to describe the diffraction problems in question. The 
internal wave described by u,' propagates along the free boundary and is scattered by the edge 
as it reaches the floating substance. As a result, a reflected internal wave URJ appears 
(see (4.2)), which propagates along the free boundary against the incoming wave in the negative 
direction of the x-axis towards infinity. Moreover, part of the energy of the incoming wave 
is spent in exciting pure diffraction waves described by the term u,' in (4.1) and (4.2) and 
representing a superposition of radial running waves of the form A&eap(_Cicp - iat). One can 

check the last assertion by considering the explicit form (3.1) of the function ud and represen- 
ting sin 'p as a linear combination of exponents. 

It follows from formula (4.1) that when o< w, there is another internal wave arising 
in addition to the waves described above. In terms of the theory of scattering the additional 
wave can be called the transmitted wave. This internal wave propagates in the positive direc- 
tion of the x-axis along the massive part of the separating boundary, and its wavelength (see 
the expression for us) is always less than that of the internal wave on the free separating 
boundary (since a(b), and decreases infinitely as o-w, - 0. Its amplitude also tends 
to zero as w+w,-0, and the wave vanishes for 0 :> 0,. Thus, w := (0, is a kind of 
threshold frequency, since for frequencies exceeding this value propagation of internal waves 
along the massive part of the boundary turns out to be impossible. In other words, the trans- 
mission coefficient for waves penetrating into the half-plane z> 0, which contains the 
massive part of the separating boundary, turns out to be equal to zero for o> 0,. 

1. 
2. 

3. 
4. 
5. 
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